
Winner of Great Indian Workplace 2018
Emerging Enterprises Category

Introduction:

This whitepaper explains concepts of
edition based redefinition (EBR) in detail
and challenges in the online application
upgrade and how oracle 11gR2 meets these
challenge.

These challenges must be met in order to
do the Online Application Upgrade.

Changed database objects/code should not
disturb the live users of pre-upgrade
application.
Transaction done by the users of the pre-
upgrade application must be reflected in
the post-upgrade application.

Online Patch Application Using Edition Based Redefinition
Sundaravel Ramasubbu, Senior Consultant – DBA practice

Nov 2015

In case of hot rollover, transaction done by the
users of the post-upgrade application must be
reflected in the pre-upgraded application.

Oracle Database version 11gR2 meets these
challenges by introducing the new concept
called Edition Based Redefinition.

Code changes are installed in the privacy of a
new edition.
Data changes are made safely by writing only to
new columns or new tables not seen by an old
edition. This will be accomplished by an
Editioning view.
A crossedition trigger propagates data changes
made by the old edition into the new edition’s
columns, or (in hot-rollover) vice-versa.

Introduction:
 An Edition is a nonschema object.
 Listed in the DBA_OBJECTS catalog view.
 Like Object type dictionary, they appear to be

owned by SYS.
 From Version 11gR2, there will be one edition by

default with the name ORA$BASE.

Editioned or Noneditioned objects:

Edtioned object:
 If a Schema object that has both an editionable

type and edition-enabled owner is called
editioned object

 It has own copy an editioned object.
 It’s only visible to the edition.
 Views, synonyms and all kind of PL/SQL objects

are editionable object types.

Editions

Nonedtioned object:
 Schema object that has noneditionable type.
 It’s identical in and visible to all editions.
 Table, Java class etc are Noneditionable object

types.

Create Edition:
 We can create an edition as the child of an

existing edition. First edition we create on the
database is child of ORA$BASE edition.

SQL>create edition e2

Retiring Edition:
 After making the new edition (Upgraded Version)

available it’s very important to make sure no user
will use old edition (Pre-Upgraded Version).

 It can be achieved by revoking “Use” privilege on
the old edition from every user.

SQL>select 'revoke '||PRIVILEGE||' on
'||table_name||' from '||grantee||';' FROM
DBA_TAB_PRIVS WHERE TABLE_NAME =
'&OldEditionNme' ;

Dropping Edition:
 It’s safe to drop the edition if you want to rollback

the application upgrade.
 You can drop the edition if the following

conditions are met.
 The edition is either the root edition or a leaf

edition
 If edition is the root edition, It has no editioned

objects that are inherited by its child edition.

Editions

 When the edition is not in use.
 When the edition is not database default

edition.

 Syntax to drop the edition
SQL>Drop edition EditionName cascade; ## which
drops the edition and drops the actual objects.

Introduction
 An editioning view, as a special kind of view, is

editionable
 Why it’s special kind of view? Here is the answer.

 In ordinary view (Non-editioning view), the
only type trigger that we can define, that is
“INSTEAD OF” trigger.

 In an editioning view, we can define every
type of trigger that we can define on a table.

 However we can’t add constraints and
Indexes to an editioning view.

Creating an editioning view
 Create editioning view using the below syntax.
SQL>CREATE EDITIONING VIEW ed_orders_view
(o_id, o_date, o_status) AS SELECT order_id,
order_date, order_status FROM orders WITH READ
ONLY;

Editioning Views:

 To create READ-ONLY editioning view, specify WITH READ
ONLY clause.

 To create READ-WRITE editioning view just omit WITH
READ ONLY clause.

Replacing an editioning view:
 Replace an editioning view use the syntax
SQL>CREATE OR REPLACE EDITIONING VIEW;
 Triggers defined on the replaced editioning view

are retained.

Introduction
 Crossedition triggers are temporary.
 Crossedition triggers can be ordered with triggers

defined on other tables.
 It’s always editioned.

Forward crossedition triggers:
 User of pre-upgrade edition changes the table

data, it will be reflect on Post-Upgrade edition.
This is accomplished with forward crossedition
triggers.

Reverse edition triggers:
 Reverse edition triggers ensures that when user of

post-upgrade edition changes the table data, it
will be reflect in the pre-Upgrade edition.

Creating a crossedition triggers:
 In order to create crossedition trigger used must

be edition enabled.
 Following rules will apply to create crossedition

triggers
 It must be defined on table not view.

Crossedition Triggers

 It must be a DML trigger.
 Crossedition is always FORWARD unless we

specify REVERSE clause in the syntax.
 FOLLOWS clause is allowed only when creating a

forward crossedition triggers.
 PRECEDES clause is allowed only when creating a

reverse crossedition triggers.

References:
http://docs.oracle.com/cd/E11882_01/appdev.112/e
10471/adfns_editions.htm#ADFNS020

http://www.oracle.com/technetwork/database/feat
ures/availability/edition-based-redefinition-1-
133045.pdf

http://docs.oracle.com/cd/E11882_01/appdev.112/e10471/adfns_editions.htm#ADFNS020
http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf

