Reorganizing FND_LOBS table in Oracle EBS R12.1.3

FND_LOBS is usually one of the top 10 table in an EBS environment. It stores all the attachments that have been uploaded to Oracle Applications. There is a LOB field within this table called FILE_DATA, the corresponding LOB segment (e.g., APPLSYS.SYS_LOB000******04$$) is where the actual attachment data is stored, and is usually very large.

The size of FND_LOBS table and its LOB_SEGMENT SYS_LOB******$$ was around 3GB and 1.5 TB in our environment.

There were over 40 lakhs record in the FND_LOBS table each pertaining to its own Application Module. Our Client had recently decided to migrate the EBS environment to OCI (IAAS). The OC team had decided to follow expdp/impdp to migrate the EBS database from on-prem to cloud. When they tried to perform the export the EBS database they had faced an issue with the FND_LOBS table. They had faced the following error,

ORA-31693: Table data object "APPLSYS"."FND_LOBS" failed to load/unload and is being skipped due to error:

ORA-29913: error in executing ODCIEXTTABLEPOPULATE callout

ORA-01555: snapshot too old: rollback segment number with name "" too small

ORA-22924: snapshot too old

This error occurred while the expdp is trying to export the FND_LOBS table. This issue is occurring due to corruption in the FND_LOBS table.

Reference - SRDC - ORA-22924 or ORA-1555 on LOB data: Checklist of Evidence to Supply (Doc ID 1682707.1)

As suspected there were logical corruptions in the FND_LOBS table and 26 rows were identified as corrupted records in FND_LOBS table by the validation scripts in Doc ID 1682707.1.

We had opened a SR with Oracle Support to resolve the corruptions, Oracle Support had suggested to follow action plan mentioned in Doc ID 1950896.1 to remove corruptions.

As per Doc ID 1950896.1 we had performed the following,

Section a - Identifying and removing logical corruptions

a. Create a temporary dummy table for storing the rowids of the corrupted LOBs. here the dummy table name is "corrupt_lobs".

SQL> create table corrupt_lobs (corrupt_rowid rowid, err_num number);

Create this table as a user who has necessary provilege to scan the target table for corruptions.

b. Execute the following PL/SQL block to identify the corrupted rows. Provide the <lob Column name> and <Table name> with the respective LOB column and table name.

SQL> declare

error_1578 exception;

error_1555 exception;

error_22922 exception;

pragma exception_init(error_1578,-1578);

pragma exception_init(error_1555,-1555);

pragma exception_init(error_22922,-22922);

num number;

begin

for cursor_lob in (select rowid r, &&lob_column from &table_owner..&table_with_lob) loop

begin

num := dbms_lob.instr (cursor_lob.&&lob_column, hextoraw ('889911')) ;

exception

when error_1578 then

insert into corrupt_lobs values (cursor_lob.r, 1578);

commit;

when error_1555 then

insert into corrupt_lobs values (cursor_lob.r, 1555);

commit;

when error_22922 then

insert into corrupt_lobs values (cursor_lob.r, 22922);

commit;

end;

end loop;

end;

 /

When prompted enter the details,

Enter value for lob_column : FILE_DATA

Enter value for table_owner : APPLSYS

Enter value for table_with_LOB: FND_LOBS

Note - the execution time depends on the size of the table.

c. Once Step b is complete, the table "corrupt_lobs" will contain the rowids of the corrupted rows.

SQL> select * from corrupt_lobs;

d. Perform the follwoing to remove the corruptions,

SQL> update APPLSYS.FND_LOBS set FILE_DATA=empty_blob() where rowid in (select corrupt_rowid from CORRUPT_LOBS_FNDLOBS);

e. Again perform Step a, b and c and confirm the corrupted records are gone.

After performing the above action plan, the logical corruption got resolved.

But it agitated the behaviour of EBS, the users were not able to attach any attachments in the EBS.

They were facing the issues.
Users were getting the following error while trying to attach the files to the EBS,

oracle.apps.fnd.framework.OAException: oracle.jbo.DMLException: JBO-26041: Failed to post data to database during "Rollback to Savepoint": SQL Statement "null".

at oracle.apps.fnd.framework.OAException.wrapperException(OAException.java:912)

at oracle.apps.fnd.framework.server.OADBTransactionImpl.commit(OADBTransactionImpl.java:722)

at oracle.apps.fnd.upload.webui.UploadRNCO.processFormRequest(UploadRNCO.java:236)

at oracle.

And every time a user is trying to attach to the EBS, we noticed the following error in the database alert log.
ora-600 error in the database alert log file.

Error: ORA-00600 [25027] [0] [0] [5] [0]

Error Stack:

ORA-00600: internal error code, arguments: [25027], [0], [0], [5], [0], [], [], [], [], [], [], []

Upon checking, we learned that performing Section a had set the corrupt lob to empty lob which eventually added the blocks formerly mapped to this lob to the freelist.If the lob segment continues growing using more space, the corrupt block can be attempted to be reused (as the block is free) and corruption error will be produced again for an INSERT or an UPDATE of the lob segment requesting more space.

The only fix for our issue was to re-org the FND_LOBS table and its lob segment.

There are three types of Re-org method,

a. Move table

b. Export, truncate/drop & Import the table

c. CTAS - Create Table as Select * from tablename (We did not use this, but it involves us to create a copy of the source table as 'create table table_name as select * from applsys.fnd_lobs' then truncate the source table and insert records from the backup table)

We had an opportunity to re-org FND_LOBS table in our environment.

Section b - Steps to perform "Alter Table Move" on FND_LOBS table.

a. Find the Size of the FND_LOBS table and its associated lob_segment size.

SQL> select owner, table_name, column_name, segment_name, tablespace_name from dba_lobs where table_name='FND_LOBS';

SQL> select a.owner, a.object_name, a.object_type, a.created, b.tablespace_name,sum(b.bytes/1024/1024)

 from dba_objects a, dba_segments b

 where a.object_name=b.segment_name

 and a.object_name = '&segment_name_from_previousquery'

 group by a.owner, a.object_name, a.object_type, a.created, b.tablespace_name

 order by 6 desc;

Get the segment_name, tablespace_name, lob_segment name from the above queries.

Note : - Alter table Move shall be performed in two ways,

1. Move the table within the tablespace.

More space needs to be added to the tablespace and then later can be resized after the table is successfully moved.

2. Move the table to another tablespace and move it back to its original tablespace.

A new tablespace with the same size shall be created and later dropped once the table is successfully moved. Using this method the table needs to be moved twice. (Source tablespace to new tablespace and from new tablespace to its original source tablespace)

Alter table Move can be performed online, but performing the move table when EBS application online will be time consuming. It is better to bring down the EBS services for faster completion and avoid any errors.

b. Add sufficient space to the tablespace of FND_LOBS for the move task, for example if your FND_LOBS lob_segement size is 500 GB add datafiles of 500GB.If you want to create a new tablespace for this, then create a new tablespace with the same size of the FND_LOBS and its LOB_SEGMENT.

c. Perform FND_LOBS move.

SQL> alter table applsys.fnd_lobs move;

(or)

SQL> alter table applsys.fnd_lobs move tablespace target_tablespace.

d. Move the respective LOB_SEGMENT of FND_LOBS,

SQL> alter table APPLSYS.FND_LOBS move lob (FILE_DATA) store as segment_name_from_previousquery;

(or)

SQL> alter table APPLSYS.FND_LOBS move LOB (FILE_DATA) store as segment_name_from_previousquery tablespace target_tablespace;

After the FND_LOBS and its LOB Segment is moved to another tablespace, move it back to its original source tablespace.

SQL> alter table applsys.fnd_lobs move tablespace source_tablespace.

SQL> alter table APPLSYS.FND_LOBS move LOB (FILE_DATA) store as segment_name_from_previousquery tablespace source_tablespace;

c. Rebuild the indexes of FND_LOBS,

SQL> select owner, index_name, status from dba_indexes where table_owner='APPLSYS' and table_name='FND_LOBS';

SQL> alter index APPLSYS.FND_NODES_U1 rebuild;

SQL> alter index APPLSYS.FND_NODES_N1 rebuild;

The LOB_SEGMENT index will be rebuild automatically as part of move table.

Section c - Steps to export/import FND_LOBS table - Standard method

a. Analyse FND_LOBS table collect the table size, lob segment size, no of rows in FND_LOBS table, respective LOB Segment associated with FILE_DATA column etc.

b. Make sure you have sufficient space in the Data pump directory before initiating the export of FND_LOBS table.

c. Initiate the export of FND_LOBS table,

$ expdp "'/ as sysdba'" tables=APPLSYS.FND_LOBS directory=DUMP_FND dumpfile=dev_fndlobs.dmp logfile=dev_fndlobs.log exclude=STATISTICS COMPRESSION=NONE

Excluding the statistics will help the import operation to complete faster. Gather stats can be later run after the import so excluding statistics while exporting is totally fine.

Compression is set to none to mention the expdp not to perform any compressions while exporting the table.

d. Truncate the FND_LOBS after the expdp completes successfully,

SQL> truncate table APPLSYS.FND_LOBS;

e. Shrink the FND_LOBS table once to reclaim any unused space,

SQL> ALTER TABLE APPLSYS.FND_LOBS MODIFY LOB (FILE_DATA) (SHRINK SPACE);

f. Impor the FND_LOBS table,

$ impdp "'/ as sysdba'" tables=APPLSYS.FND_LOBS directory=DUMP_FND dumpfile=dev_fnd_01.dmp logfile=impdp_fndlobs_2.log table_exists_action=APPEND

Table_Exist_Action is set to append to mention the impdp to just insert the data and not to create the FND_LOBS table.

-- Rebuild Index after import

SQL> alter index APPLSYS.FND_NODES_U1 rebuild;

SQL> alter index APPLSYS.FND_NODES_N1 rebuild;

Section d - Steps to export/import FND_LOBS table - Parallel method

Tables with LOB columns will not use parallel so parallel parameter in the expdp/impdp command will not help.

But there is a way to perform the export/import in a concurrent way i.e splitting up the table into small chunks and performing the export/import.

This method will logically divide the table based on rowids and these are balanced internally and the data is divided among each dumps.

a. Analyse FND_LOBS table collect the table size, lob segment size, no of rows in FND_LOBS table, respective LOB Segment associated with FILE_DATA column etc.

b. Make sure you have sufficient space in the Data pump directory before initiating the export of FND_LOBS table.

c. Initiate the export of FND_LOBS table,

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 0\" directory=DUMP_FND dumpfile=dmp_0.dmp logfile=explog_0.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 1\" directory=DUMP_FND dumpfile=dmp_1.dmp logfile=explog_1.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 2\" directory=DUMP_FND dumpfile=dmp_2.dmp logfile=explog_2.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 3\" directory=DUMP_FND dumpfile=dmp_3.dmp logfile=explog_3.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 4\" directory=DUMP_FND dumpfile=dmp_4.dmp logfile=explog_4.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 5\" directory=DUMP_FND dumpfile=dmp_5.dmp logfile=explog_5.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 6\" directory=DUMP_FND dumpfile=dmp_6.dmp logfile=explog_6.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 7\" directory=DUMP_FND dumpfile=dmp_7.dmp logfile=explog_7.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 8\" directory=DUMP_FND dumpfile=dmp_8.dmp logfile=explog_8.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

$ expdp "'/ as sysdba'" TABLES=APPLSYS.FND_LOBS QUERY=APPLSYS.FND_LOBS:\"where mod\(dbms_rowid.rowid_block_number\(rowid\)\, 10\) = 9\" directory=DUMP_FND dumpfile=dmp_9.dmp logfile=explog_9.log exclude=STATISTICS COMPRESSION=NONE metrics=y &

Excluding the statistics will help the import operation to complete faster. Gather stats can be later run after the import so excluding statistics while exporting is totally fine.

Compression is set to none to mention the expdp not to perform any compressions while exporting the table.

d. Truncate the FND_LOBS after the expdp completes successfully,

SQL> truncate table APPLSYS.FND_LOBS;

e. Shrink the FND_LOBS table once to reclaim any unused space,

SQL> ALTER TABLE APPLSYS.FND_LOBS MODIFY LOB (FILE_DATA) (SHRINK SPACE);

f. Import the FND_LOBS table,

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_0.dmp logfile=imp_log_0.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_1.dmp logfile=imp_log_1.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_2.dmp logfile=imp_log_2.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_3.dmp logfile=imp_log_3.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_4.dmp logfile=imp_log_4.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_5.dmp logfile=imp_log_5.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_6.dmp logfile=imp_log_6.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_7.dmp logfile=imp_log_7.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_8.dmp logfile=imp_log_8.log CONTENT=DATA_ONLY &

$ impdp "'/ as sysdba'" directory=DUMP_FND dumpfile=dmp_9.dmp logfile=imp_log_9.log CONTENT=DATA_ONLY &

CONTENT is set to DATA_ONLY to mention the impdp to just insert the data and not to create the FND_LOBS table.

-- Rebuild Index after import

SQL> alter index APPLSYS.FND_NODES_U1 rebuild;

SQL> alter index APPLSYS.FND_NODES_N1 rebuild;

These are all the possible options we could come up with on re-organizing the FND_LOBS table. Re-orging FND_LOBS table was successful in all the methods. But method explained in Section b and Section C were time consuming compared to Section d.

