[bookmark: _GoBack]Parameter Sniffing Issue in SQL Server and Its Resolution:
Introduction:
Parameter sniffing is a common performance issue in SQL Server where a stored procedure performs inconsistently for different executions. In this scenario, the same stored procedure runs fast for some parameter values but becomes extremely slow for others. This behavior often leads to intermittent performance issues, user complaints, and production incidents, even though no code changes were made recently.
Why We Need to Do:
Parameter sniffing occurs when SQL Server compiles a stored procedure for the first time and generates an execution plan based on the initial parameter values passed. This execution plan is then cached and reused for subsequent executions, regardless of whether the new parameter values have a different data distribution.
If the underlying table has skewed data (for example, some parameter values return very few rows while others return millions), the cached plan may not be optimal for all executions. As a result:
· Queries may switch between fast and slow execution randomly
· CPU usage may spike unexpectedly
· Index seeks may turn into index scans
· Blocking and timeouts may occur during peak hours
This issue is especially impact in OLTP systems where stored procedures are executed frequently with varying input parameters.
How Do We Solve
Below are practical approaches used in real-time environments to identify and resolve parameter sniffing issues.

Step 1: Identify Parameter Sniffing
Symptoms indicating parameter sniffing include:
· Query performance improves after clearing the procedure cache
· Same query shows different execution plans for different parameters
· High variance in execution time for the same stored procedure
Example check:
EXEC sp_recompile 'dbo.usp_GetOrderDetails';
If performance temporarily improves after recompilation, parameter sniffing is likely involved.

Step 2: Use OPTION (RECOMPILE)
For queries where parameters vary significantly, forcing recompilation can help.
SELECT OrderID, CustomerID, OrderDateFROM OrdersWHERE CustomerID = @CustomerID
OPTION (RECOMPILE);
Impact:
· Generates an optimal plan per execution
· Increases CPU usage slightly due to recompilation
· Best suited for infrequently executed queries

Step 3: Use Local Variables Instead of Parameters
This prevents SQL Server from sniffing the input parameter value.
DECLARE @LocalCustomerID INT;SET @LocalCustomerID = @CustomerID;
SELECT OrderID, CustomerID, OrderDateFROM OrdersWHERE CustomerID = @LocalCustomerID;

Impact:
· SQL Server uses average data distribution
· Avoids extreme execution plans
· Useful when predictable, stable performance is required

Step 4: Use OPTIMIZE FOR Hint
When a specific parameter value represents typical usage:
SELECT OrderID, CustomerID, OrderDateFROM OrdersWHERE CustomerID = @CustomerID
OPTION (OPTIMIZE FOR (@CustomerID = 100));
Or use unknown:
OPTION (OPTIMIZE FOR UNKNOWN);
Impact:
· SQL Server creates a generalized execution plan
· Reduces plan instability
Step 5: Separate Logic for Skewed Data
If certain parameter values behave differently, split the logic:
IF @CustomerID = 1BEGIN
 -- Optimized query for large dataENDELSEBEGIN
 -- Optimized query for small dataEND
This ensures SQL Server generates appropriate plans for different workloads.

Step 6: Monitor After Fix
· Capture execution time before and after changes
· Monitor CPU, logical reads, and execution count
· Ensure no regression during peak business hours

Conclusion
By identifying parameter sniffing through execution plan analysis and inconsistent query performance, we applied targeted solutions such as query recompilation, local variables, and optimization hints. These changes stabilized execution plans, reduced CPU spikes, and ensured consistent query performance across different parameter values. Addressing parameter sniffing proactively helps prevent recurring production incidents and improves overall database reliability.

