Performance Tuning of Slow Running Queries in SQL Server

Introduction
One of the most common issues faced by SQL Server DBAs and application teams is slow-running queries that impact overall database performance. These queries may execute fine during development or testing but start degrading in production environments due to data growth, increased concurrency, or inefficient query design. Slow queries can lead to high CPU utilization, blocking, timeouts, and ultimately poor application performance, affecting business operations and user experience.

Why We Need to Do Performance Tuning:
Slow-running queries can occur due to multiple reasons, including but not limited to:
· Missing or inefficient indexes
· Poorly written queries (e.g., SELECT *, unnecessary joins, scalar functions in WHERE clause)
· Outdated or missing statistics
· Parameter sniffing issues
· High I/O due to table scans
· Blocking and locking caused by long-running transactions
· Inappropriate execution plans chosen by the query optimizer
As data volume increases over time, queries that once performed well may start consuming excessive CPU, memory, and I/O resources. If not addressed proactively, these issues can escalate into P1 incidents, causing application slowness or outages. Hence, systematic performance tuning is critical to maintain database stability and scalability.

[bookmark: _GoBack]How Do We Solve:
Below is a structured approach to identify and tune slow-running queries using real-time DBA practices.
Step 1: Identify the Slow Query
Use dynamic management views (DMVs) to identify top resource-consuming queries:
SELECT TOP 10
 qs.total_elapsed_time / qs.execution_count AS AvgElapsedTime,
 qs.execution_count,
 qs.total_worker_time AS TotalCPU,
 SUBSTRING(qt.text, qs.statement_start_offset/2,
 (CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE qs.statement_end_offset END - qs.statement_start_offset)/2) AS QueryTextFROM sys.dm_exec_query_stats qsCROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qtORDER BY AvgElapsedTime DESC;
This helps identify queries consuming high CPU or execution time.

Step 2: Analyze Execution Plan
· Check for Table Scans, Index Scans, Key Lookups, or Missing Index suggestions
· Look for operators with high cost (percentage)
· Validate estimated vs actual rows mismatch

Step 3: Optimize Indexing Strategy
Example: Query filtering on CustomerID and OrderDate
CREATE NONCLUSTERED INDEX IX_Orders_CustomerID_OrderDateON Orders (CustomerID, OrderDate)
INCLUDE (OrderAmount, OrderStatus);
Proper indexing significantly reduces I/O and execution time.

Step 4: Update Statistics
Outdated statistics can cause poor execution plans.
UPDATE STATISTICS Orders WITH FULLSCAN;
In production environments, schedule regular statistics maintenance during non-peak hours.

Step 5: Rewrite Inefficient Queries
Before:
SELECT *FROM OrdersWHERE YEAR(OrderDate) = 2024;
After (SARGABLE):
SELECT OrderID, CustomerID, OrderDate, OrderAmountFROM OrdersWHERE OrderDate >= '2024-01-01'
 AND OrderDate < '2025-01-01';
This allows SQL Server to efficiently use indexes.

Step 6: Handle Parameter Sniffing (If Applicable)
Options include:
· OPTION (RECOMPILE)
· Using local variables
· Optimizing stored procedure logic based on data distribution

Step 7: Monitor Post-Fix Performance
· Validate reduced execution time
· Monitor CPU, I/O, and wait stats
· Ensure no regression during peak load

Conclusion
By systematically identifying slow-running queries, analyzing execution plans, optimizing indexes, updating statistics, and rewriting inefficient SQL code, we were able to significantly improve query performance and overall database stability. This structured performance tuning approach reduced resource consumption, improved response times, and prevented recurring performance incidents. Proactive monitoring and periodic tuning ensure that SQL Server continues to perform efficiently as data and workload grow.

